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Abstract This chapter reviews emerging optimal control models for interconnected
natural gas and electricity networks and discusses economic drivers motivating the
development of such models. We also review computational patterns and structures
arising in these models and assess the potential and limitations of state-of-the-art
optimization solvers.

1 Motivation

Natural gas and power grid infrastructures are becoming increasingly interdepen-
dent. A major factor driving this situation is the increasing deployment of gas-fired
power plants [1]. These plants are modular and less capital intensive compared with
large, centralized generation facilities running on nuclear and coal fuel sources. In
addition, gas-fired plants are more flexible and can quickly ramp up and down their
power output. This flexibility becomes an asset as the share of intermittent solar and
wind power increases. Moreover, the high availability of gas resulting from new
fracking technologies has led to lower prices, making gas-fired plants economically
more attractive.

An important feature of gas-fired generation (compared with other generation
technologies) is that large amounts of fuel must be transported to power genera-
tion facilities in gaseous form through a sophisticated network that spans thousands
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of miles. A key advantage of having such a network infrastructure is that signifi-
cant amounts of gas can be stored inside the pipelines. The stored gas is distributed
spatially in the network and is normally referred to as line-pack [8]. Line-pack is
used by pipeline operators to modulate variations of gas demands at multiple spa-
tial points in intraday operations. Some of the strongest variations in gas demands
are the result of on-demand start-up and shut-down of gas-fired power plants [22].
Modulating these variations is challenging because the fast release of line-pack at
multiple simultaneous locations can trigger complex spatiotemporal responses that
propagate hundreds to thousands of miles and that can take hours to stabilize. There-
fore, line-pack management is performed by using sophisticated optimal control and
pipeline simulation tools. These automation tools orchestrate the operation of a mul-
titude of compressor stations distributed throughout the system with the objectives
of satisfying demands, maintaining pressure levels, and minimizing compression
costs [23].

An important issue faced by gas-fired power plants is that they compete for nat-
ural gas with industrial facilities and with local distribution companies (LDCs) that
supply gas to urban areas. Therefore, natural gas cannot be guaranteed to be avail-
able at each power generation facility at all times. This limitation is particularly
evident during the winter season when residential and office buildings require large
amounts of gas for heating. An extreme manifestation of this issue was observed
during the polar vortex of 2014 in which sustained low temperatures in the Mid-
west region of the U.S. led to high gas demands in urban areas and to equipment
failures1,2. These factors resulted in widespread shortages of natural gas in places
as remote as California, Massachusetts, and Texas. These gas shortages in turn re-
sulted in lost electrical generation capacity totaling 35 GW. At a value of lost load
of 5,000 $/MWh, shortages of this magnitude represent economic losses of 175 mil-
lion $/hr. The New England area alone lost 1.5 GW of power generation capacity
[2]. The polar vortex also exposed market inefficiencies resulting from the increas-
ing interaction between grid and gas systems. In particular, gas-fired plants required
significant uplift payments from the independent system operators (ISOs). These
payments compensated the power plants for the lost revenue resulting from the
inability of the gas infrastructure to deliver fuel. These operational and economic
issues question the ability of the gas network infrastructure to sustain additional
gas-fired generation. Consequently, it is important to investigate the economic and
flexibility of natural gas infrastructures by developing detailed physical models and
advanced optimal control tools.

Optimal control formulations of natural gas networks using high-resolution dy-
namic models have been reported by several researchers [26, 8, 27]. These studies,
however, do not consider coordination with power grid networks and treat power
plants as exogenous uncertain disturbances. By coupling gas and electric models
one can better understand the enhanced flexibility and resiliency that can be gained
by coordination. Researchers have also developed models of interconnected power

1 http://tinyurl.com/pvouhym
2 http://tinyurl.com/no5v2za

http://tinyurl.com/pvouhym
http://tinyurl.com/no5v2za


Optimal Control of Natural Gas Networks 3

grid and natural gas networks but the dynamics of natural gas systems are often ne-
glected [14, 5, 4]. Steady-state models cannot capture line-pack storage dynamics
and thus significantly misrepresent the flexibility of the system in real-time opera-
tions. Consequently, steady-state models are more appropriate for long-term plan-
ning studies [25]. In this respect, our model seeks to better capture the flexibility
provided by line-pack in real-time operations. Recent studies have also reported
models and strategies for co-optimization of gas and power grid transmission sys-
tems using detailed dynamic gas models. The studies in [16, 17] use full-resolution
models but focus on small synthetic models to assess economic improvements re-
sulting from coordination and to evaluate the impact of using dynamic over steady-
state gas pipeline models. The studies in [10, 21] focus on the Great Britain net-
work and provide more in-depth analyzes. In particular, the study in [10] presents a
multi-time period model to study the effects of gas terminal (supply) failures on the
integrated gas-electric system. The model, however, uses simplifications to address
computational complexity; in particular, an aggregated Great Britain model with 16
buses is used and the gas system dynamics are only captured at the daily time scale
(dynamics in intra-day operations are ignored). The model proposed in [21] studies
the effect of wind power adoption levels on gas generation and demonstrates that
line-pack can limit system performance during periods with low wind generation.
The simplified 16-bus Great Britain network is also used in this study, the gas net-
work is simplified by aggregating parallel branches, and gas dynamics are ignored.
None of the studies reported in the literature discuss computational efficiency and
scalability issues. In this chapter we review modern optimal control formulations
of natural gas networks and discuss the economic drivers motivating such applica-
tions. We also provide a review of existing computational capabilities that enable the
solution of these complex optimization problems and provide pointers to open chal-
lenges. Our objective is to focus on real-sized networks and to capture full physical
and spatiotemporal resolutions. This can enable us to discover non-intuitive physi-
cal behavior that can inform ISOs and gas pipeline operators. Focusing on real-sized
systems will also enable us to assess the limits of state-of-the-art optimization algo-
rithms and to identify scalability bottlenecks.

The chapter is structured as follows: Section 2 presents elements of a typical
optimal control model for natural gas networks and discusses interconnection with
power grid models and derivation of stochastic formulations. Section 3 discusses
economic and resiliency insights that can be gained with detailed optimal control
models and Section 4 discusses computational solution strategies and open chal-
lenges. Concluding remarks are provided in Section 5.

2 Optimal Control Formulations

In this section we present typical components of a optimal control formulation for
gas networks and provide pointers to suitable extensions.
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2.1 Transport Equations

We use the following isothermal form of the continuity and momentum equations:

∂ p`(x,τ)
∂τ

+
ZRT
A`

∂ f`(x,τ)
∂x

= 0 (1a)

1
A`

∂ f`(x,τ)
∂τ

+
∂ p`(x,τ)

∂x
+

8λ`

π2D5
`

f`(x,τ)| f`(x,τ)|
ρ`(x,τ)

= 0 (1b)

Here, τ ∈ [0,N] := T is the time dimension with final time N and x ∈X` := [0,L`]
is the axial dimension with length L`. The link diameters are denoted as D` and the
friction coefficients as λ`. The states of the link are the gas density ρ`(x,τ), speed
ν`(x,τ), and pressure p`(x,τ). The gas pressure and density are related as

p`(x,τ)
ρ`(x,τ)

= ZRT, (2)

where R is the universal gas constant and T is temperature. For a detailed non-
isothermal formulation the reader can refer to [3]. The pipeline links are connected
through a network comprising a set N of nodes, a set S of supply flows, and a
set D of demand flows. For each node n ∈N we define the set of inlet and outlet
links, L snd

n := {` |snd(`) = n},L rec
n := {` |rec(`) = n}. Here, snd(`) ∈N is the

start node of link ` and rec(`) ∈N is the end node. We assume that the direction of
the flow is given. For formulations that allow for flow reversals the reader is referred
to [6]. We define dn( j) ∈N as the node at which the demand flow d j(τ) is located
and sn(i) ∈N as the node at which the supply flow si(τ) is located. Accordingly,
we define the sets Sn := { j ∈ S |sn( j) = n} and Dn := { j ∈ D |dn( j) = n} for
each node n ∈N . For each node n ∈N we also define pressures θn(·).

For modeling convenience we lift the network system by introducing dummy inlet
flows for each link f in

` (·), respectively; and outlets f out
` (·). Using these definitions

we can express mass balances at the nodes as

∑
`∈L rec

n

f out
` (τ)− ∑

`∈L snd
n

f in
` (τ)+ ∑

i∈Sn

si(τ)− ∑
j∈Dn

d j(τ) = 0, n ∈N (3)

We split the set of links L into subsets of passive Lp links and active links La. For
the active links we define the boost pressures ∆θ`(·) which are the additional (non-
negative) pressures introduced by the compressor located at the inlet (sending) node
of the link. For the passive links, there is no compression. The boundary conditions
for the link pressures are given by

p`(L`,τ) = θrec(`)(τ), ` ∈L (4a)

p`(0,τ) = θ
dis
` (τ), ` ∈L . (4b)

The boundary conditions for the link flows are,



Optimal Control of Natural Gas Networks 5

f`(0,τ) = f in
` (τ), ` ∈L (5a)

f`(L`,τ) = f out
` (τ), ` ∈L . (5b)

The discharge pressures of the compressors (located at the inlet of the active links)
are given by,

θ
dis
` (τ) = θsnd(`)(τ)+∆θ`(τ), ` ∈La. (6a)

For the passive links we simply have that,

θ
dis
` (τ) = θsnd(`)(τ), ` ∈Lp. (7)

The total compression power consumed in the active links is given by

P̀ (τ) = cp f in
` (τ)T

( θ dis
` (τ)

θrec(`)(τ)

)β

−1

 , ` ∈La. (8)

As can be seen, the transport equations are highly nonlinear. Additional complexity
can be added to the model by consider control valves and more complex compressor
configurations [26, 18].

2.2 Constraints

We consider the following constraints on available compressor power, suction and
discharge pressures, and demand delivery pressures,

PL
` ≤ P̀ (τ)≤ PU

` , ` ∈La (9a)

θ
suc,L
` ≤ θsnd(`)(τ)≤ θ

suc,U
` , ` ∈La (9b)

θ
dis,L
` ≤ θ

dis
` (τ)≤ θ

dis,U
` , ` ∈La (9c)

θ
dem,L
j ≤ θdn( j)(τ)≤ θ

dem,U
j , j ∈D . (9d)

We also have the implicit physical bounds f in
` (·), f out

` (·), P̀ (·) ≥ 0 and we assume
that the pressures (or inlet flows but not both) at the supply points are given:

θsn( j)(τ) = given or s j(τ) = given, j ∈S . (10)

The gas demands are bounded by the given targets dtarget
j (·),

0≤ d j(τ)≤ dtarget
j (τ), j ∈D . (11)

We enforce periodicity of the line-pack in each pipeline,
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0
f`(x,T )dx≥

∫ L`

0
f`(x,0)dx, ` ∈La. (12)

Without this constraint, the system will tend to deplete line-pack in order to mini-
mize compressor power and this can make operation in the following day infeasible.
The periodicity constraint thus provides a mechanism to deal with the finite horizon
of the optimal control problem (OCP) and ensure recursive feasibility [24].

2.3 Initial State

We assume that the system is at steady-state at the initial time τ = 0. Such steady-
state satisfies the steady-state transport equations

ZRT
A`

∂ f`(x,τ)
∂x

= 0 (13a)

∂ p`(x,τ)
∂x

+
8λ`

π2D5
`

f`(x,τ)| f`(x,τ)|
ρ`(x,τ)

= 0 (13b)

One can use the boundary conditions defined at τ = 0 and the assumption of given
supply pressures (or flows) at τ = 0 to prove that fixing boost pressures ∆θ`(0) and
demand flows d j(0) fully defines the initial states [27].

2.4 Objective Function

The cost function can be set as a combination of gas supply, compression cost, and
gas demand delivery,

ϕgas :=
∫ N

0

(
∑

i∈S
α

s
i si(τ)+ ∑

`∈La

α
P
` P̀ (τ)− ∑

j∈D
α

d
j d j(τ)

)
dτ (14)

The first term is the supply cost, the second term in the cost function is the compres-
sor power with cost αP

` , and the third term is the total value of served demand.The
demand term seeks to maximize the served demand (this explains the negative sign)
and the parameter αd

j can be interpreted as the value of the served demand. Conse-
quently, the cost function is an analog of the social welfare used in electricity market
clearing formulations [20]. From a control stand-point, the demand term can also be
interpreted as penalty for unserved demand. In particular, when the value αd

j is high
relative to compression power and supply, the control system will tend to push the
demands d j(·) to the targets dtarget

j (·) defined in the constraints (11). The param-
eter αd

j can also be used to prioritize certain demand locations (e.g., residential
over power plants) and can be used to model gas bids provided by gas-fired power
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plants. We highlight that the cost function (14) is linear and this tends to introduce
ill-conditioning in the Hessian matrix and slow down convergence. This is an issue
arising in optimal control models with economic objectives and is exacerbated in
distributed systems [28]. To ameliorate this issue, it is also possible to define a cost
function of the form

ϕgas :=
∫ N

0

(
∑

i∈S
α

s
i si(τ)+ ∑

`∈La

α
P
` P̀ (τ)+ ∑

j∈D
α

d
j (d j(τ)−dtarget

j (τ))2

)
dτ.

(15)

Here, the quadratic term in the objective is a tracking term that seeks to bring the
demands to the targets. An advantage of this formulation is that it adds positive
curvature to the cost function and this can aid computational performance. A dis-
advantage of this formulation is that the parameter αd

j does not necessarily have an
economic interpretation and, consequently, it might be difficult to tune.

The optimal control model for the gas side can be summarized as:

min ϕgas

s.t. (1)− (13).

One can use a structural model analysis to prove that the number of degrees of
freedom of the problem corresponds to that of the control trajectories ∆θ`(τ), ` ∈
La,τ ∈T and d j(τ), j ∈D ,τ ∈T [27].

2.5 Integrated with Gas-Electric Formulations

A major source of uncertainty in natural gas systems are the large gas demands
resulting from power plants [22]. At the same time, gas-fired power plants cannot
guarantee that the entire amount of gas requested can be delivered at all times and
this uncertainty affects ISO operations. Consequently, it is natural to believe that bet-
ter communication/coordination between natural gas and power grid infrastructures
can significantly help mitigate uncertainty on both sides. Moreover, we can expect
that by combining control flexibility through coordinate we can increase overall re-
siliency. The question is, however, by how much? To answer this question we can
develop integrated gas-electric optimal control models.

Economic dispatch is an OCP that is solved by ISOs to balance supply and de-
mand and to price electricity in intraday operations. We formulate the dispatch prob-
lem as the continuous-time OCP shown in (16). For a mote detailed explanation of
the model the reader is referred to [13]. Here, we use a notation similar to that used
in the description of the gas system to highlight similarities and differences between
gas and electric models. We highlight differences in notation when appropriate. We
define the sets of electricity suppliers (i.e., power plants or generators) as S , the set
of electrical loads as D , the set of network nodes as N , and the set of transmission
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lines as L . For each link ` ∈L we denote snd(`) ∈N as the sending node and
rec(`) ∈N as the receiving node. We define Sg ⊆S as the subset of power plants
that are fired by natural gas. The rest of the suppliers are either thermal or renewable
power suppliers. We define Sn ⊆S as the subset of suppliers connected to node
n and Dn ⊆ D as the subset of loads connected to node n. We define L snd

n ⊆L as
the set of links originating from node n and L rec

n ⊆L as the set of lines ending in
node n.

min ϕgrid :=
∫ N

0

(
∑

i∈S
α

s
i si(τ)− ∑

j∈D
α

d
j dgrid

j (τ)

)
dτ (16a)

s.t.
dsi(τ)

dτ
= ri(τ), i ∈S (16b)

∑
`∈L rec

n

f`(τ)− ∑
`∈L snd

n

f`(τ)+ ∑
i∈Sn

si(τ)− ∑
j∈Dgrid

n

dgrid
j (τ) = 0, n ∈N (16c)

f`(τ) = β`

(
θsnd(`)(τ)−θrec(`)(τ)

)
, ` ∈L (16d)

f
`
≤ f`(τ)≤ f `, ` ∈L (16e)

θ n ≤ θn(τ)≤ θ n, n ∈N (16f)
si ≤ si(τ)≤ si, i ∈S (16g)
ri ≤ ri(τ)≤ ri, i ∈S (16h)

0≤ dgrid
j (τ)≤ dgrid,target

j (τ), i ∈S (16i)

dgas,grid
i (τ) = ηi · si(τ), i ∈Sg. (16j)

The time profiles for power generation, delivered loads, flows, and voltage angles
are denoted as si(·), i∈S ; dgrid

j (·), j ∈Dgrid ; f`(·), `∈L ; and θn, n∈N , respec-

tively. The time profiles for target loads are denoted as dgrid,target
j (·). The power

flows are bounded by the capacity limits f
`
, f `, the angles are bounded by θ n,θ n,

and the supply flows are bounded by si,si. The supply change rates are given by
ri(·), i ∈S and are bounded by the ramp limits ri,ri.

The cost function (16a) is the negative social welfare [20]. The generation and
demands costs are αs

i , i∈S and αd
j , j ∈Dgrid , respectively. In the case of inelastic

demands the demand costs are typically set to the value of lost load (VOLL). This
value is typically in the range 1,000-10,000 $/MWh [9]. This parameter has similar
interpretation to the one used in the gas side.

The dual variables of the network balance equation (16c) are the locational
marginal prices, which we denote as πn(·), n ∈ N . Equations (16d) are the DC
power flow relationships, equations (16f)-(16h) are bounds for voltage angles, gen-
eration, and ramps; respectively.

We define dgas,grid
i (·), i ∈Sg as the gas demands originating from the gas-fired

plants and ηi, i ∈Sg as the heat rates of the different power plants. The heat rate
is a measure of the conversion efficiency of a power plant installation and is defined
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as the amount of fuel (in BTUs) needed to produce a KWh of electrical energy.
The ideal heat rate is 3,412 BTU/KWh, which indicates a one-to-one conversion
between fuel and electrical energy (efficiency of 100%). Consequently, the smaller
the heat rate, the more efficient the technology. Different gas-fired plants can have
different heat rates (combined cycle plants have much smaller heat rates than do
simple-cycle plants). In fact, the energy information administration (EIA) reports
that the average heat rate for gas-fired plants has been reducing steadily from 9,207
BTU/KWh in 2003 (efficiency of 37%) to 7,948 BTU/KWh in 2013 (efficiency of
42.9%) because of the adoption of new technologies. In comparison, the average
heat rate for coal power plants was reported to be 10,459 BTU/KWh (efficiency of
32%) in 2013 and this has remained at similar levels since 20033.

The coupling between gas and power grid infrastructures is given by the follow-
ing constraints:

dtarget
j (τ) = dgas,grid

gn( j) (τ)+dbase
j (τ), j ∈D (17a)

dgas,grid
gn( j) (τ)≤ d j(τ)−dbase

j (τ), j ∈D . (17b)

The first constraint states that the gas demand targets for the gas infrastructure are
given by the gas demands of the gas-fired power plants plus an exogenous base gas
demand that arises from industrial facilities and/or LDCs serving urban areas. Here,
gn( j) ∈Sg denotes the power plant corresponding to the gas demand j ∈ D . The
second constraint states that the gas used by the power plants cannot physically ex-
ceed the gas delivered by the gas infrastructure. We use this second constraint to
model situations in which the gas infrastructure is physically constrained and thus
the delivered demand dgas

j (·) cannot match the target demand dgas,target
gn( j) (·). The

simultaneous solution of the grid and gas models together with the coupling con-
straints (17) gives the coordinated dispatch model.

To compare the performance of a coordinated gas-electric system, we consider
an uncoordinated setting in which the two infrastructures do not dispatch jointly (as
is currently done). This is simulated by first solving the economic dispatch prob-
lem for the power grid (16) to set the predicted generation si(·), i ∈S , the natural
gas demand targets dgas,grid

gn( j) (·), j ∈Dg, and the predicted locational marginal prices
πn(·), n ∈N . Having the gas demand targets, we solve the gas dispatch problem
to maximize the gas delivered and minimize compression costs. The solution of
this problem sets the realized gas demands delivered to the gas-fired power plants
dgas

j (·)−dgas,base
j (·). Because the realized gas demands might not be able to match

the power grid targets, we solve the economic dispatch problem for the power grid
(16) again to determine the realized generation schedule and locational marginal
prices corresponding given the realized delivered gas demands. We denote the real-
ized power generation schedules as sreal

i (·) and the prices as πreal
n (·). Differences be-

tween the target and delivered gas demands will introduce a difference between the
predicted and realized generation schedules and prices. When the gas-fired power

3 http://www.eia.gov/electricity/annual/html/epa_08_01.html

http://www.eia.gov/electricity/annual/html/epa_08_01.html
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plants cannot obtain the total gas requested, they will need to curtail power and must
pay for the unserved electricity generation at the realized price [19]. In such a case,
the revenue for the power plants is given by

Ri :=
∫ N

0

(
πsn(i)si(τ)+ sreal

i (τ)(πreal
sn(i)(τ)−πsn(i)(τ))−α

s
i sreal

i (τ)
)

dτ, i ∈Sg.

(18)

Here, sn(i) ∈N denotes the node at which supplier i ∈ Sg is connected to. The
total revenue for the gas-fired generators is denoted by R = ∑i∈Sg Ri.

When the requested and delivered gas demands coincide we have that the pre-
dicted and realized generation schedules coincide (i.e., the predicted generation
schedule is feasible to the gas system). Consequently, we have that πreal

sn(i)(·) =
πsn(i)(·) and the revenue reduces to

Ri =
∫ N

0

(
πsn(i)(τ)si(τ)−α

s
i sreal

i (τ)
)

dτ, i ∈Sg. (19)

After space-time discretization (for a review on discretization techniques the
reader is referred to [3, 7]), we can represent the coupled gas-electric problem as
the nonlinear program (NLP):

min ϕgrid(wgrid)+ϕgas(wgas) (20a)
s.t. cgrid(wgrid)≥ 0, (λgrid) (20b)

cgas(wgas)≥ 0, (λgas) (20c)
Πgaswgas +Πgridwgrid = 0, (λ ). (20d)

Here, wgrid are all the variables in the grid side and wgas are all the variables in the
gas side. This problem decomposes if the coupling constraints (20d) are removed.
The coupling constraints correspond to (17) (after introducing slack variables) and
we note that all that is needed to form the coupling constraints are the matrices Πgas
and Πgrid . These are trivial matrices (containing only zeros and ones).

2.6 Stochastic Formulations

In the presence of uncertainty, both gas and grid sides will seek to make decisions
in anticipation of the future. We can formulate this decision process as a two-stage
problem of the form in (21a). Here, ω ∈ Ω is the scenario realization, E[·] denotes
the expectation, and constraints (21e) model nonanticipativity conditions for the
grid and gas sides. The expected value form can also be used to model conditional-
value-at-risk functions [27]. The nonanticipativity conditions separate the variables
into here-and-now decisions (decisions made before uncertainty is revealed) and
recourse variables (decisions made after uncertainty is revealed). Here-and-now de-
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cisions in the gas side can be the allocation of line-pack while in the grid side are
forward generation schedules. Recourse decisions on the gas side can be correc-
tions of compressor power to mitigate variability of gas demand while on the power
grid side can be corrections on generation to mitigate wind power fluctuations. For
more details on stochastic formulations for gas and power grid networks the reader
is referred to [27, 20].

min E[ϕgrid(wgrid,ω)+ϕgas(wgas,ω)] (21a)
s.t. cgrid,ω(wgrid,ω)≥ 0, ω ∈Ω , (λgrid,ω) (21b)

cgas,ω(wgas,ω)≥ 0, ω ∈Ω , (λgas,ω) (21c)
Πgas,ω wgas,ω +Πgrid,ω wgrid,ω = 0, ω ∈Ω (λω) (21d)

∑
ω∈Ω

Πω(wgas,ω ,wgrid,ω) = 0. (λ ) (21e)

The solution the coupled stochastic problem (21a) gives rise to here-and-now
control policies. Uncertainty can model equipment failures or externalities such as
wind and solar power. When the systems are decoupled, uncertainty can also model
the interface variables between infrastructures (i.e., gas demands from power plants
dtarget

j (·)). We also recall that a deterministic formulation computes the policies
using average information of the uncertain data and we recall that a wait-and-see
(perfect information) policy can be obtained by dropping the nonanticipativity con-
straints.

3 Economic and Resiliency Issues

In this section we highlight economic and resiliency gains that can be achieved by
coordination. We first compare how a stochastic formulation that uses uncertainty
information from the power grid can significantly aid resiliency of pipeline oper-
ations. To demonstrate this, we use a long pipeline system with 13 nodes and 12
pipelines and 10 compressors that spans 1,600 km [27].

In Figure 1 we present the axial flow profiles for a pipeline system for three
demand scenarios. The gray lines are the axial profiles during the charging phase of
line-pack in the system. The axial profiles in this charging phase are the same for all
scenarios because these are non-anticipative decisions. Note that demand is satisfied
at each time step for all scenarios. From Figure 1 we also see that the optimal here-
and-now (HN) policy consists on progressively accumulate line-pack toward the end
of the system reflected by a large increase of flow close to the demand node. Once
uncertainty is revealed, the system takes three different paths. The total compression
energy for the low, medium, and high demand scenarios is 92742 kWh, 99783 kWh,
and 113672 kWh, respectively.
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Fig. 1 Optimal flow profiles for low (left), medium (middle), and high (right) demand scenarios.
Stochastic (here-and-now) policy.

0 500 1000 1500

6

8

10

12

14

16

18

Fl
ow

 [s
cm

x1
06 /d

ay
]

0 500 1000 1500

6

8

10

12

14

16

18

Length [km]
0 500 1000 1500

6

8

10

12

14

16

18

Fig. 2 Optimal axial flow profiles for low (left), medium (middle), and high (right) demand sce-
narios. Deterministic policy.
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Fig. 3 Optimal axial flow profiles for low (left), medium (middle), and high (right) demand sce-
narios. Wait-and-see (perfect information) policy.

We now compare the performance of the deterministic and wait-and-see (WS)
policies under perfect information. The optimal flow profiles for the deterministic
formulation are presented in Figure 2. As can be seen, the policy does not build as
much inventory as does the HN solution presented in Figure 1. As a result, while the
low and medium demand scenarios are feasible, the system struggles to satisfy the
high demand scenario. In fact, we have found that the demand needs to be curtailed
for the system to remain feasible. This high-stress behavior is also reflected in highly
volatile flow profiles resulting from aggressive recourse actions.

The axial flow profiles for the WS solution are presented in Figure 3. As can
be seen, the profiles are similar to those of the HN solution presented in Figure 1.
The ideal WS solution, however, presents less volatile flow profiles than those of
the HN counterpart. This is because inventory can be planned differently for each
scenario (we have perfect information). This is particularly evident in the low and
high demand scenarios. The total power consumed in the WS scenarios are 88245
kWh, 98914 kWh, and 112779 kWh, respectively. This is less than 1% per sce-
nario, compared with the HN solution. Clearly, significant resiliency can be gained
by using the HN formulation over the deterministic one without sacrificing much
performance over the ideal case of perfect information. These results illustrate that
significant improvements in resiliency can be obtained by anticipating gas demand
scenarios of power plants. Unfortunately, deriving uncertainty characterizations for
power plant demands is extremely difficult because these are fully correlated to the
decisions of the ISO on the power grid side. Consequently, coordination between gas
and power grid sides would require the ISO to provide suitable demand scenarios
that are compatible with its dispatch operations. We now use a case study in Illinois
to illustrate this point and other economic issues. We also use this larger system to
quantify the effect of increased control flexibility achieved by coordination.

The Illinois power grid transmission system comprises 2,522 lines, 1,908 nodes,
870 demands points, and 225 generators points (153 gas-fired generators). Because
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Fig. 4 Illinois electrical (thin lines) and gas (thick lines) transmission systems. Black dots are
gas-fired power plants.

of the difficulty in obtaining natural gas infrastructure data, we construct a simulated
natural gas network system using the basic topology reported by the EIA4 and by
using engineering insight to ensure gas supply to all the gas-fired power plants under
nominal conditions. The gas network comprises 215 pipeline segments, 157 nodes,
12 compression stations, and 4 supply points. The resulting network in sketched in
Figure 4.

Table 1 Economic performance under coordinated and uncoordinated settings (scm= standard
cubic meters and M$=million U.S. dollars).

ϕgrid [M$] ϕgas [M$] ϕgas,comp [$] dgas,target [scm ×10−6] dgas [scm×10−6] R [M$]
Uncoord 36.54 -13.52 28,618 141.25 135.54 2.70
Coord 36.40 -14.54 33,600 145.74 145.74 3.50

We compare economic performance for the infrastructures under coordinated and
uncoordinated settings. The results are summarized in Table 1. In our simulations,
the electrical loads were always satisfied; consequently, we report only the genera-
tion cost component of the grid cost (we denote this as ϕgrid). From the results we
make the following observations:

4 http://tinyurl.com/cssgzr9

http://tinyurl.com/cssgzr9
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• Under a coordinated setting the power cost decreases by 0.38% which represents
a total of $140,000. The gas cost decreases by 7.54%, which corresponds to a
total of $1,020,000.

• Under an uncoordinated setting only 96% of the gas requested is delivered. At a
gas price of 3 $/MMBTU5, the total undelivered gas has an economic value of
$605,000.

• Under a coordinated setting the compression cost increases by 17.4%. This is the
result of an increased amount of gas delivered to the power plants. In particular,
7.5% more gas is delivered under the coordinated setting. At a gas price of 3
$/MMBTU, the value of the additional gas delivered is $1,080,000. Note that the
total increase in compression cost is negligible compared to the additional value
of the delivered demand.

• Under a coordinated setting the revenue for the gas-fired generators increases
by 29.6%, which corresponds to a total of $800,000. This is the result of the
additional gas delivered and the decreased revenue penalties resulting from coor-
dination.
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Fig. 5 Requested (blue solid line) and realized (green dotted line) gas demands for 16 power plants
under an uncoordinated setting.

5 http://www.eia.gov/naturalgas/weekly/

http://www.eia.gov/naturalgas/weekly/
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It is rather surprising that both the gas and power grid sides benefit from coordi-
nation (i.e., the objectives of the gas and grid operators do not compete). Moreover,
gas-fired generators increase their revenue. We can explain the decreased perfor-
mance under an uncoordinated setting from the fact that the power grid operator
cannot easily determine how much gas can the gas network deliver at different spa-
tial locations and at different times. Thus, the power grid operator can be overly
optimistic (as in the case presented) or pessimistic about the amount of gas that
can actually be delivered. This situation is clearly illustrated in Figure 5, where we
present the target and realized gas demands for 16 different gas-fired generators
under the uncoordinated setting. Note that the gas network cannot deliver the total
amount of gas requested at four locations. The resulting error in the prediction in-
troduces a penalty for both the power grid and the gas-fired generators. In particular,
the power grid operator has to dispatch more expensive power plants, resulting in
higher a generation cost and the gas-fired power plants have to pay for the unserved
generation. Note also that, even if the gas operator knows the gas demands of the
power grid in advance, it cannot guarantee to satisfy such demands due to physical
constraints.
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Fig. 6 Requested (blue solid line) and realized (green dotted line) gas demands for 16 power plants
under coordinated setting.
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The presence of gas shortages at several power plant locations would suggest
that the gas pipeline system is constrained by design. We now demonstrate that this
perception is not correct, under a coordinated setting this delivery bottleneck can in
fact be avoided through better control. In fact, as we have already seen in Table 1,
7% more gas can be delivered under the coordinated setting; we now explain why
this is the case. From Figure 6 we see that dispatch under a coordinated setting is
smoother (i.e., demands are ramps instead of aggressive withdrawals) and this sig-
nificantly enhances the flexibility to deliver gas at other locations. In particular, all
gas demands can be delivered. We can explain this increased flexibility by noticing
that, under a coordinated setting, gas-fired generators act as distributed demand re-
sponse resources that the gas operator can use to better control network pressures
and flows and avoid delivery bottlenecks. In other words, gas-fired power plants
become assets rather than liabilities to the pipeline operator.

Figures 5 and 6 also help us illustrate the rather arbitrary patterns of gas demands
emanating from power plants, which are dictated by dispatch decisions of the ISO.
These gas demands patterns are to be contrasted with gas and electricity demands
of urban areas, which follow strong periodic patterns that are correlated to weather
and behavior. The irregular patterns of power plants demands make it difficult to
model their uncertainty and this can prevent the adoption of advanced stochastic
optimal control solutions. The ISO plays a critical role here, as it can provide char-
acterizations of uncertainty by using possible gas demand scenarios generated under
different wind power, weather, and contingency scenarios.

4 Computational Issues

In this section we review problem structures arising in emerging optimal control
models and discuss available solution strategies. We also highlight limitations of
state-of-the-art solvers and discuss open challenges.

4.1 Emerging Model Structures

The deterministic (single scenario) grid-gas OCP can be expressed in the more gen-
eral form

min ∑
p∈P

ϕp(xp) (22a)

s.t. cp(xp) = 0, p ∈P (λp) (22b)
xp ≥ 0, p ∈P (νp) (22c)

∑
p∈P

Πp xp = 0 (λ0) (22d)
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where P := {gas,grid}. Here, λ0 ∈ ℜm0 are the multipliers of the coupling con-
straints, λp ∈ ℜmp , νp ∈ ℜnp are the multipliers of the partition p constraints and
bounds, xp ∈ ℜnp are the primal variables of the partition p, and Πp ∈ ℜm0×np are
the coupling matrices. It is imporant to observe that this structure also arises in
stochastic programming problems. For instance, the stochastic OCP for the gas side
or for the power grid side can be expressed as (22).

Under a primal-dual interior point framework, the KKT system of problem (22)
can be permuted into the block-bordered-diagonal (BBD) form:

K0 BT
1 BT

2 . . . BT
|P|

B1 K1
B2 K2
...

. . .
B|P| K|P|


︸ ︷︷ ︸

:=M(δw,δc)


∆w0
∆w1
∆w2

...
∆w|P|

=−


r0
r1
r2
...

r|P|

 , (23)

where ∆w0 = ∆λ0, ∆wp = (∆xp,∆λp),

K0 =−δcIm0 , Kp =

[
Wp(δw) JT

p
Jp −δcI

]
BT

p = [Πp 0] , (24)

Jp = ∇xpcp(xp), Wp(δw) = ∇xp,xpL + X−1
p Vp + δwI. Symbol L denotes the La-

grange function of (22) and δw,δc ≥ 0 are regularization parameters. For more de-
tails in the derivation of the KKT system the reader is referred to [15]. The BBD
structure of the linear system can be exploited using a parallel Schur decomposition
of the form

−

(
δcIm0 + ∑

p∈P
BpK−1

p BT
p

)
︸ ︷︷ ︸

S

∆w0 =−r0 + ∑
p∈P

K−1
p Bprp (25a)

Kp∆wp =−rp−BT
p ∆w0, p ∈P, (25b)

where S is the Schur complement. One can exploit individual structures within each
partition. For instance, we can express the optimization problem in the gas partition
p = gas as,

min ϕ(x,u) (26a)
s.t. c(x,u) = 0, (λ ) (26b)

x≥ 0 (νx) (26c)
u≥ 0, (νu). (26d)
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In this structure, u is assumed have the same dimension as the number of degrees
of freedom of the problem (e.g., boost pressures and demands). In other words, if
u is fixed, then c(x,u) = 0 is a square system of equations (in the gas system these
correspond to the discretized transport and network equations). The KKT system of
problem (26) is given byWxx(δw) Wxu JT

x
Wux Wuu(δw) JT

u
Jx Ju

 ∆x
∆u
∆λ

=−

 rx
ru
rλ

 (27)

where the coefficient matrix on the left hand side is also known as the augmented
matrix. By construction, the Jacobian Jx = ∇xc(x,u) is square; and, if it is nonsin-
gular and δc, then we can construct the following null-space matrix:

Z =

[
−J−1

x Ju
I

]
. (28)

The step for u can then be obtained by solving a reduced system of the form
ZTW (δ )Z∆u = rZ where rZ is an appropriate right-hand side vector and ZTW (δ )Z
is the reduced Hessian. Having the step for u, we compute the step for x from
∆x = −J−1

x (ru + Ju∆u). Note that this approach requires factorizations of Jx and
of the reduced Hessian ZTW (δ )Z instead of factorizations of the entire augmented
matrix. Because of this, this approach can yield significant speed-ups when the num-
ber of degrees of freedom u is small.

The expression of structures also facilitates model construction and can accel-
erate model processing overhead of algebraic modeling languages (e.g., generation
of derivative information and sparsity structures) which is significant in large-scale
models such as the ones arising in large infrastructures. For instance, the gas-electric
coupled problem when discretized in space gives an NLP with 249,919 variables,
224,292 equality constraints, and 154,093 inequality constraints. If we replicate this
model over multiple scenarios we can see that 100 scenarios already give an NLP
with 25 million variables that cannot be processed with existing algebraic model-
ing languages such as AMPL, GAMS, or JuMP. Consequently, it is necessary to
partition the problem to enable processing and model storage in memory.

We now demonstrate the benefits of identifying structures and exploiting them
in high-performance computers. To do so, we use the parallel interior point solver
PIPS-NLP [11] to solve a stochastic OCP for a gas pipeline system with 13 nodes
and 12 pipelines and 10 compressors. We consider two settings: in the first case we
exploit only the stochastic structure (Table 2) while in the second case we exploit
the stochastic and the reduced space structure of the problem (Table 3). The NLP
under study has 96 scenarios and a total of 1,930,752 variables. The problem is
solved on the distributed-memory cluster Fusion at Argonne National Laboratory.
As can be seen, strong scaling is observed in both cases and solution times can be
brought down from an hour to less than 7 minutes. Moreover, these NLPs cannot
be solved in a single processor because of the large memory requirements. We also
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observe that exploiting the reduced space structure inside each scenario decreases
the computational time by a factor of nearly 3.

Table 2 Scalability of PIPS-NLP exploiting stochastic structure.

Scenarios n Obj Iter Time(hh:mm:ss) MPI Proc
96 1,930,752 1.39×102 42 01:13:16 8
96 1,930,752 1.39×102 42 00:38:18 16
96 1,930,752 1.39×102 42 00:24:55 24
96 1,930,752 1.39×102 42 00:19:23 32
96 1,930,752 1.39×102 42 00:12:42 48
96 1,930,752 1.39×102 42 00:06:48 96

Table 3 Scalability of PIPS-NLP exploiting stochastic and reduced space structure.

Scenarios n Obj Iter Time(hh:mm:ss) MPI Proc
96 1,930,752 1.39×102 42 00:29:54 8
96 1,930,752 1.39×102 42 00:14:45 16
96 1,930,752 1.39×102 42 00:10:00 24
96 1,930,752 1.39×102 42 00:07:36 32
96 1,930,752 1.39×102 42 00:05:14 48
96 1,930,752 1.39×102 42 00:02:54 96

4.2 Dealing with Negative Curvature

A key difference between convex and nonconvex NLPs is the potential presence of
negative curvature. The presence of negative curvature indicates that the Newton
step computed from the solution of the KKT system (23) might not correspond
to a minimum of the associated quadratic programming problem. In a line-search
setting this is an important issue because the Newton step cannot be guaranteed to
provide a descent direction for the objective function when the constraint violation
is sufficiently small, which is a key requirement to ensure global convergence.

The presence of negative curvature can be checked by computing the inertia of
the KKT system (23). This can be done using Haynsworth’s formula:

Inertia(M(δw,δc)) = ∑
p∈P

Inertia(Kp)+ Inertia(S) . (29)

We recall that n = ∑p np and m = m0 + ∑p mp. Consequently, if we have that
Inertia(Kp)={np,mp,0} for all p ∈P then the inertia of M(δw,δc) is correct if and
only if Inertia(S) = {0,m0,0}. When the inertia is correct we can thus guarantee that
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the Newton step is a descent direction. One can obtain the inertia of the blocks Kp
using LBLT factorizations. If the problem has nested structures, one can also obtain
the inertia of each block Kp by applying Haynsworth’s formula recursively.

If the inertia of the linear system (23) (or a subsystem) obtained from (29) is
not correct we progressively increase the regularization parameter δw until the KKT
system gas correct inertia. We call this the inertia-based regularization strategy.
Note that every time we increase the regularization parameter we need to solve the
linear system again. Consequently, the presence of negative curvature can make the
computation of the Newton step very expensive.

Obtaining the inertia of Schur matrices using an LBLT factorization can be in-
efficient because the Schur complement is often a dense matrix or contains dense
blocks. To avoid these limitations, we have recently proposed an inertia-free test of
the form,

∆wTW (δw)∆w≥ κ∆wT
∆w (30)

for κ > 0 [12]. Here, ∆w is a Newton step computed along the null-space of the
constraint Jacobian and W (δw) is the entire Hessian matrix of the NLP (22). In the
inertia-free approach we increase the regularization parameter until the curvature
test (30) holds. The key observation is that this test implicitly requires the Newton
step to be a descent direction directly which can occur even if the linear system
does not have correct inertia. Consequently, the inertia-free test provides more flex-
ibility to accept steps. To demonstrate this feature, we solve a large-scale stochastic
optimal control instance and compare inertia-based regularization (IBR) and inertia-
free regularization(IFR) . This is an NLP with 128 uncertain scenarios, 1,024,651
variables, and 1,023,104 constraints. The results obtained with PIPS-NLP are pre-
sented in Table 4. We can see that, despite the high nonlinearity of the large-scale
instances, the inertia-free approach IFR converges in all instances. In general IFR
requires more iterations than does IBR but the number of factorizations is reduced,
resulting in faster solutions. We can thus see the effect of adding flexibility to step
acceptance is beneficial.

Table 4 Performance of inertia-based and inertia-free regularization strategies on stochastic OCP
for gas system.

IBR IFR
#MPI Obj Iter Linear Solves Time(s) Iter Linear Solves Time(s)

8 1.26E-02 153 278 832 93 106 491
16 1.26E-02 136 251 363 109 122 315
32 1.26E-02 146 274 209 99 112 143
64 1.26E-02 157 286 123 101 114 79
128 1.26E-02 145 275 64 109 125 52
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4.3 Open Issues

We can pose the stochastic programming problem for the coupled grid-gas system
(21a) in the general form:

min ∑
p∈P

∑
j∈Pp

ϕp, j(xp, j) (31a)

s.t. cp, j(xp, j) = 0, p ∈P, j ∈Pp (λp, j) (31b)
xp, j ≥ 0, p ∈P, j ∈Pp (νp, j) (31c)

∑
j∈Pp

Πp, j xp, j = 0 (λ0, j) (31d)

∑
p∈P

Πp xp = 0 (λ0) (31e)

Here, P is the scenario set and Pp = gas,grid is the system partition. One can show
that this nested problem yields an augmented system of the form (23) in which each
diagonal block Kp has a BBD structure of the form

Kp =


Kp,0 BT

p,1 BT
p,2 . . . BT

p,Pp

Bp,1 Kp,1
Bp,2 Kp,2

...
. . .

Bp,Pp Kp,Pp

 , p ∈P. (32)

Consequently, we can also apply a Schur decomposition to perform solves with the
block system Kp. Moreover, structures such as the reduced-space structure of the
gas side can be exploited as well. This would give a linear system with 3 nested
structures.

The coupled stochastic problem is of interest because it would be desirable to
understand the increasing resiliency gained by coordination. As we have seen, for
instance, coordination enables the gas infrastructure to deliver significantly larger
amounts of gas and this flexibility can be used to withstand abrupt variations of
wind power. Solving coupled stochastic problems on realistic networks, however,
is extremely challenging and defies the scope of state-of-the-art solvers. To give an
idea of the complexity, for the Illinois system we have found that the solution time of
a single scenario problem for the coupled gas-electric system is 40 minutes. While it
is possible to partition the Illinois grid and gas systems using Schur decomposition,
this is not always beneficial. In particular, we have found that performing a direct
sparse factorization of the entire coupled system is more efficient that performing
Schur decomposition. In other words, the benefits of Schur decomposition are only
observed when the spatial domain (network size or spatial discretization resolution)
of the gas and network systems increase. Consequently, the only alternative to ac-
celerate solutions seems to coarsen the spatial discretization of the gas transport
equations.
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To illustrate the effect coarsening, we compare the economic and computational
performance of coupled gas-electric problems with low- and high-resolution spatial
discretizations. We compare the results using our base implementation with Nx = 10
spatial points per pipeline and a low resolution implementation with Nx = 3 spa-
tial points per pipeline. The low-resolution problem gives an NLP with 141,559
variables, 115,932 equality constraints, 157,765 inequality constraints, and 25,627
degrees of freedom. The high-resolution problem gives an NLP with 249,919 vari-
ables, 224,292 equality constraints, 154,093 inequality constraints, and 25,627 de-
grees of freedom. The number of degrees of freedom remains unchanged because
all of these enter at the network nodes and are thus independent of the discretization
resolution [27]. This is an important structural property of gas optimal control for-
mulations. The results comparing high and low resolutions are presented in Table 5.
The solution time is reduced from 40 minutes to about 10 minutes. Most notably,
from Table 6 we can see that coarsening does not introduce large errors in economic
performance. This behavior, however, cannot be guaranteed in general. It is thus
necessary to devise linear algebra strategies that can perform coarsening adaptively
at the linear algebra level to create preconditioners. Multigrid schemes are available
for solving OCPs with embedded PDEs but these schemes are currently not general
enough to handle hyperbolic PDEs as those arising in gas networks and to handle
mixed sets of constraints. This is an important research area.

Table 5 Computational results for coupled problems for base and perturbed topologies.

Iter. Time(s) Linear Solve [-] Time/Linear Solve(sec)
Nx = 10 232 2401.01 311 7.72
Nx = 3 157 573.68 188 3.05

Table 6 Economic performance under low- and high-resolution spatial discretizations.

ϕgrid [M$] ϕgas [M$] ϕgas,comp [$] dgas,target [scm ×10−6] dgas [scm×10−6] Rgas [M$]
Nx = 10 36.40 -14.54 33,600 145.74 145.74 3.50
Nx = 3 36.39 -14.55 33,356 145.83 145.83 3.48

5 Conclusions

We have discussed characteristics of emerging optimal control models for inter-
connected natural gas and electrical networks. These models are motivated by the
increasing interest in understanding the economic benefits of coordination and the
need to understand system resiliency in the face of extreme weather events and re-
newable power adoption. We have seen that optimal control problems arising in
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infrastructures are highly structured and that these structures can be exploited to ac-
celerate solutions and avoid memory bottlenecks. We have also demonstrated that
existing state-of-the-art tools can handle large and highly nonlinear models but these
capabilities are insufficient to handle geographical regions of practical interest.
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